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A Method-of-Moments Study of Strip Dipole
Antennas in Rectangular Waveguide
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Abstract—A theoretical and experimental study of strip dipole
antennas located on a supporting dielectric slab mounted trans-
versely in rectangular waveguide is presented. Galerkin’s method
is used in the full-wave solution of an integral equation for each
antenna’s surface-current density using the Green’s function for
the slab-loaded waveguide. The paper is motivated by the need
for multiport-network models to aid the development of multiple-
device power-combining circuits in rectangular waveguide. The
design data presented here for single antennas should prove
useful for planar-mixer and oscillator circuits. The presence of
slab modes is noted and the slab-mode resonant frequencies are
predicted. Validation of the numerical models is provided by
scattering experiments on the shorted antennas, and excellent
agreement is obtained in the range of 8.0–12.5 GHz.

Index Terms—Antennas, method of moments (MoM), quasi-
optics, waveguide.

I. INTRODUCTION

PLANAR antennas for the coupling of RF energy to and
from an active device in an enclosed environment are

of significant interest as an alternative to circular posts and
for low-loss power-combining, particularly at millimeter-wave
frequencies. Planar circuits have the well-known advantages
of reduced manufacturing cost, repeatable impedance behav-
ior from precise fabrication methods, and the potential for
monolithic integration with active devices.

Arrays of planar antennas have been used in quasi-optical
oscillator power combiners [1]–[3] and amplifiers [4]–[6]
which can provide highly efficient power combining by elim-
inating hybrid splitting and combining networks. A variation
is radiative power combining in rectangular waveguide, which
has been used in recent designs [7], [8] and is of interest
since the enclosure provides robustness as well as a conducting
boundary for the removal of heat. Fig. 1 shows a multiple-
oscillator power combiner with a section of rectangular wave-
guide holding a transverse dielectric slab supporting an array
of strip dipole antennas. The full-wave analysis without unit-
cell or infinite-array assumptions of the strip dipole array
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Fig. 1. Strip dipole-antenna array in rectangular waveguide with hybrid
oscillators configured for power combing.

leading to a multiport-network model is presented in this paper
together with design data for the driving-point impedance of
single-antenna circuits.

Single strips in rectangular waveguide and planar quasi-
optical arrays have been successfully modeled in the past.
Eisenhart and Khan [9] applied the induced-EMF method to
determine the driving-point impedance of a flat strip in infinite
rectangular waveguide from an assumed current-density distri-
bution on its surface, extending the analysis to circular posts
with an empirically determined correction factor. Quasi-optical
arrays have been successfully characterized to 60 GHz using
this method with a unit-cell approach based on an infinite-array
assumption and TEM-mode excitation [2], [6].

There has been much work on the full-wave analysis of
boxed circuits incorporating planar transmission lines on one
or more dielectric layers [10]–[13] using the method of mo-
ments (MoM) in either the spatial or spectral domains. Li
[13] presented the Green’s function for semi-infinite rect-
angular waveguide filled with a multilayered media, and
Hashemi–Yeganeh [14] analyzed the electrical behavior of
thin metallic posts in rectangular waveguide using the MoM.
However, in all these previous analyses, the problems are
formulated with fixed waveguide terminations or ignore the
effect of the supporting dielectric.

In this paper, we first detail the integral-equation formula-
tion and the derivation of the necessary Green’s function for
the rectangular waveguide loaded with transverse dielectric
slab. The MoM solution of the integral equation leading to
a network model for the antenna array is then presented,
followed by an examination of the electromagnetic behavior
of single-strip dipole antennas showing their behavior as a
function of frequency, dielectric, and geometric parameters.
The conditions under which dielectric slab modes are strongly
excited are also discussed. The computational approach and the
results from scattering experiments are presented as validation
of the theoretical analysis.
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II. M OM ANALYSIS

The total field at any point in the waveguide is the su-
perposition of the total elemental current-source field and is
frequently written as

(1)

where is the Green’s function and time depen-
dence is assumed. Boldface denotes a vector quantity and the
over-bar denotes a dyadic. When some of the components
of are known such as on perfectly conducting surfaces,
the only unknown in (1) is the surface-current density .
However, a general analytical solution of this equation is
impossible. In specific cases where the geometry of the prob-
lem permits to be calculated, the problem is reduced
to the evaluation of , from which is determined
by substitution into (1) and from by recourse to
Maxwell’s equations.

Many techniques are available to discretize the continuous
integral equation and achieve a numerical solution for ,
with the most popular being the MoM [15]. Problems such
as this, in which the Green’s function can be derived, can
be solved more rapidly using the MoM than a volume FEM,
the finite-difference time domain (FDTD) method, or the
transmission-line matrix method, all of which require meshing
of the total volume of the structure.

The MoM analysis which follows is restricted to rectangular
strips, although extension to arbitrary shapes is possible with
the aid of a suitable meshing algorithm. It is assumed through-
out that all metal surfaces are perfect conductors, in which
case the electric-field tangential to these surfaces .
Then, the only areas over which nonzero exists are the
feed regions of the antennas. This then gives the well-known
electric-field integral equation (EFIE) for the surface of each
antenna:

at the feeds
elsewhere.

(2)

The components of involving are not required,
as it has been assumed that the antennas have no-extent.
Throughout the following discussion, the excitation is assumed
to be -directed. If the excitation and geometric conditions are
such that the surface-current density is well-approximated by
the current in the -direction alone, then only the
component of the dyadic Green’s function is retained in (2).
The reaction inner product

(3)

where is the electric field and the current density
is a suitable inner product for the MoM [16] and is used in
the following analysis.

A. Decomposition into Linear Equations

The unknown surface-current density on each antenna is ex-
panded in piecewise sinusoidal functionsand pulse functions

as follows:

(4)

(5)

where

(6)

and

otherwise.
(7)

In both (6) and (7), is an integer ranging over the–
sections and – sections on the antenna, and

is the strip origin where 2l is the
total antenna length, the total width, and the center
of the strip. These expressions are now substituted into the
coupled EFIE, and the integrals carried out over the surface
of each antenna in the array. The electric-field expressions so
generated are thentestedthrough the reaction integral in (3),
by applying Galerkin’s method. This yields a matrix equation
of the form

...
...

...
...

... (8)

where the submatrices are defined explicitly in Appendix B. In
general, are the elements due to the-component of the
-directed electric field from the current on antennahaving

been tested with the current elements on antenna. The square
matrix in (8) is known as thereaction matrix. The solution
vector is obtained by solving the matrix equation from
which the electromagnetic behavior of the array can be fully
determined.

B. The Feed Model

For the center-fed dipole antennas used in this paper, it
was felt that the capacitance of the gap was likely to have
significant influence on the electrical performance of the an-
tennas and thus should be incorporated in the electromagnetic
analysis. This was achieved by using a finite-gap excitation
model rather than a delta-gap model, forcing the excitation to
have a constant value over the gap.
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The localized nature of the basis functions means that the
only nonzero elements of the excitation matrix are those which
overlap with the excitation region. For the case of multiple
excitations, as in an array, the correct phase at each port must
be maintained through .

For uniform excitation we have the general form for the
reaction with a piecewise sine and pulse basis element as
follows:

(9)

where it is assumed that the excitation is-directed and and
are integers referring to each basis function overlapping

with the feed region.

C. The Green’s Function

The electric-field Green’s function is the field arising from
an arbitrarily located delta-function current source in the
rectangular waveguide loaded with a transverse dielectric slab.
The presence of the dielectric slab leads to multiple reflections
necessitating modification to the empty infinite rectangular-
waveguide Green’s function of Appendix A. The reflections
from the dielectric slab are mode-dependent, although there is
no higher order mode generation at the dielectric interfaces.
Hence, the same mode set which fully describes the fields in
the empty guide also does so inside the dielectric. The new
Green’s function can be written as

(10)

where is the infinite-waveguide Green’s function
composed of its TE and TM components

(11)

The parameters and are found by field matching at
the dielectric interfaces. If is the relative permittivity of the
dielectric, and is the complex component of the propagation
constant in the air-filled guide and is that in the dielectric
filled guide of the same cross section, then the air-dielectric
reflection coefficients are

(12)

and the associated transmission coefficients

(13)

Similarly, the dielectric–air reflection coefficients

(14)

Fig. 2. Geometry for the derivation of the modified Green’s function.

and the associated transmission coefficients

(15)

In this calculation, the Green’s function in the plane of
the antenna array ( ) is of interest. Further, the effect
of the waveguide terminations must be incorporated into the
modified Green’s function. Eisenhart and Kahn [9] produced
such an expression by considering the standing wave at any
point in the guide, though they were only considering the effect
on propagating modes. However, the expression is perfectly
valid for nonpropagating (evanescent) modes, and is shown
in (16) at the bottom of the page, where the dimensions

and are shown in Fig. 2. In (16), is the mode-
dependent reflection coefficient from the plane of the antennas
toward port 1 and is that toward port 2. These reflection
coefficients are found by considering the multiple-wave reflec-
tions at the air–dielectric and dielectric–air interfaces using
(12)–(15). It is assumed that the terminations on ports 1 and 2
do not interact with the nonpropagating modes, although such
influence can be accommodated without modification to the
general theory. Therefore, need only be calculated for the
propagating modes in the waveguide. However, the presence
of the dielectric requires that the calculations for be made
for each mode and is calculated for TE modes by

(17)

where each scattering term is found by summing an infinite
geometric series as follows:

(18)

(16)
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where the equivalent expressions for TM modes take the
same form. With these expressions and (16), the necessary
modifications of the infinite-waveguide Green’s function can
be made and the MoM calculation carried out for a given
substrate and waveguide terminations.

D. Array Network Parameters

The full set of network parameters can be obtained from
a single reaction matrix by calculating the current-density
solution under different excitation conditions. For a single
antenna, the current over the region of excitation is defined as

(19)

where the excitation is assumed to bedirected. The current-
density solution is a piecewise approximation to the true
continuous current and is

(20)

which, for unit voltage excitation gives by definition

(21)

To calculate the full network matrix for an array of
antennas, current-density solutions are required. If the

vector of currents at each antenna port is the solution for
unit excitation at antennaand all other antennas shorted (zero

over the feed region), then augmenting thesolutions
yields the matrix equation

(22)

where is the identity matrix. If an admittance form is
required then .

III. COMPUTATIONAL DETAIL AND CONVERGENCEBEHAVIOR

For convergence of the numerical calculations both the
number of subsections used in the approximation of the
antenna’s surface-current density and the number of wave-
guide modes used in the reaction calculation must each be
closely monitored. These factors are related so that if a larger
number of subsections are used on each antenna for a closer
approximation to the true surface-current density then the
number of waveguide modes used in each reaction calculation
must be modified accordingly. In general, the smaller the
subsection area, the greater the number of modes required
in the evaluation of the reaction integral. This increases
the already greater computational load due to the increased
number of subsections on each antenna.

Each element of the reaction matrix requires the evaluation
of the doubly-infinite series involving both TE- and TM-mode
contributions, as shown in Appendix B. These series converge
in a nonuniform way, and so truncation for a specific error
bound is impossible. Instead, one must monitor the series in
progressive intervals and decide whether the change to the
summand is small enough for the summation to be halted. The

Fig. 3. The variation of antenna input impedance withP and Q and
precision= 10

�3.

Fig. 4. The variation of antenna input impedance withP and Q and
Precision= 10

�5.

strategy adopted here is to check over a predefined interval,
check the convergence length, check that the relative change
in the series elements is less than some number, and check the
relative precision. If the change is smaller than the adopted
relative precision for at least a number of elements equal
to the convergence length, then the summation is halted and
evaluation of the next reaction-matrix element proceeds. We
find that setting the convergence length to 10 gives stable
numerical results with the precision adjusted according to the
number of subsections used on each antenna.

Figs. 3 and 4 show how the real component of antenna input
impedance varies with the number of antenna subsections. In
these two figures, variation from 2 to 16-sections ( ) with
1–3 sections ( ) is shown. It can be seen that associated with
a given subsectional area is a minimum precision for
good convergence. For example, in Fig. 3 it can be observed
that for or and a precision of 10 , the real part
of input impedance approaches a steady value asincreases.
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Fig. 5. Antenna and waveguide geometry for the MoM calculations.

However, when the results of the MoM calculation
become erratic with increasing . This is because as the
subsectional area is reduced with larger values ofand , the
reaction-matrix series become more slowly converging and at
a precision of 10 the series have not adequately converged
when the summation is halted. When a precision of 10is
used, good convergence behavior is observed, as shown in
Fig. 4. Dunleavy and Katehi [17] also observed this behavior
in their analysis of boxed microstrip circuits. They called this
effect “the erratic current condition,” yet the effect, rather than
being erratic, appears due to their choice of a modal truncation
point being too small for their smallest subsection sizes.

IV. I MPEDANCE CALCULATIONS

In the following simulations we consider the behavior at 10
GHz of a representative antenna 8-mm long and 1-mm wide
fabricated on 0.010-in-thick material and mounted in
WR-90 rectangular waveguide with both waveguide ports ter-
minated in (no reflections)—a configuration subsequently
referred to as thestandard antenna. Where simulations are
performed with different geometries, reference is made to the
changes. The general geometry is shown in Fig. 5.

The impedance behavior of these waveguide-housed anten-
nas is a function both of the antenna and substrate properties
as well as the waveguide terminations. Although the height of
standard rectangular waveguide is less than , resonant
behavior is observed if the antenna length and effective
relative permittivity of the substrate give an effective antenna
length of at a particular frequency. Although such a
resonant antenna may be useful in some instances, we are more
concerned with broad-band applications, and so the results
which follow concentrate on the nonresonant properties of
these antennas. In addition, the results presented here are
for standard WR-90 rectangular waveguide. Of course, other
frequency bands and waveguide sizes are of interest, but the
general results hold with appropriate scaling.

Fig. 6 shows the frequency response of a standard antenna
from 8.0 to 12.5 GHz for different substrate permittivities.
The input reactance of the antenna is strongly capacitive at
the lower end of the frequency range, indicating coupling
primarily to TM rather than TE evanescent modes. A
strong dependence of input reactance on the permittivity is
observed in these simulations, the reactance becoming more
inductive as the substrate permittivity is increased. Much of

Fig. 6. The real and complex part of input impedance of a strip dipole
antenna from 8.0 to 12.5 GHz for different substrate permittivities.

the same behavior is seen in Fig. 7 as the substrate thickness
is increased, with a commensurate rise in the effective relative
permittivity. For a particular combination of permittivity,
thickness, and length, the antenna becomes resonant.

The antenna length appears to have the strongest effect
on the input impedance, as shown in Fig. 8. Very short
antennas are strongly capacitive in agreement with the results
of Eleftheriadeset al., who analyzed the behavior of a strip
dipole used to excite a rectangular horn antenna. The width of
the strip also has a significant effect on the input impedance
of these strip antennas, as shown in Fig. 9.

The transverse position of the antenna also strongly influ-
ences its input impedance. The input resistance is directly
related to the coupling to the propagating modes in the wave-
guide—in this case, solely the TEmode. In the absence of a
dielectric, the variation of resistance with transverse position
follows the expected form and is shown in Fig. 10.
However, on higher permittivity substrates the trend becomes
more complex as the antenna can excite more than one propa-
gating mode in the dielectric. The input reactance also displays
a strong dependence on transverse position—especially on
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Fig. 7. The real and complex part of input impedance of a strip dipole
antenna for different strip thicknesses and permittivities.

high permittivity substrates—and is also strongly influenced
by the proximity of the antenna to the waveguide walls.

V. DIELECTRIC-SLAB MODES

The presented numerical analysis is based entirely on the
rectangular waveguide modes and assumes propagation as

. However, under certain conditions, a current source on
the surface of the dielectric will excite one or more transverse
slab modes. These are generally undesirable as they represent
energy loss as well as causing unwanted coupling between
electrically distant antennas. Although the excitation of slab
modes is excluded from the general analysis presented in this
paper, it is possible to determine those frequencies where the
coupling to a slab mode becomes strong such as when the
transmission line formed by the transverse dielectric shorted
at each end becomes resonant.

The magnetic field forms a loop around the antennas
in such a way as to suggest coupling predominantly to TE-
rather than TM-slab modes. The lowest order mode TE
propagates at all frequencies and has a propagation constant

Fig. 8. The real and complex part of input impedance of a strip dipole
antenna for different strip lengths and substrate permittivities. Note that the
real part of the input impedance is shown on a log scale.

given by

(23)

where is the solution of the equation

(24)

and where is the dielectric thickness and
[19]. Solving for and searching for the frequency where

, where mm for WR-90 waveguide
produces the set of curves shown in Fig. 11. For example,
a 1-mm-thick substrate will show a transverse
resonance at approximately 9.8 GHz.

VI. EXPERIMENTAL VALIDATION

Accurate measurement of the driving-point impedance of
these strip dipole antennas is a difficult task. One approach is
to feed a narrow coaxial transmission line through a waveguide
wall to the feed point for a direct measurement [9]. However,
for a planar structure, such a method presents significant
calibration difficulties as well as introducing uncertainties into
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Fig. 9. The real and complex part of input impedance of a strip dipole
antenna for different strip widths and substrate permittivities.

the measurement due to field disturbance in the vicinity of the
antenna.

Shorting the antenna-feed region and measuring from the
two waveguide ports, the scattering from the so-formed planar
strip is an alternative method for validating most of the mod-
eling predictions. The difference between a MoM simulation
for an impedance calculation and that for the scattering from
the equivalent strips differs only in the excitation vector.
Therefore, agreement between the measured and predicted
scattering from the equivalent strip is taken as evidence that
the associated antenna model is accurate.

The experimental data were obtained on an 8510C network
analyzer with a short offset-short sliding-load calibration in
WR-90 waveguide using the split-block test fixture shown in
Fig. 12 to support the substrate in the waveguide. Additional
de-embedding to move the measurement reference planes to
the dielectric surface was performed using the ideal lossless
propagation constant for WR-90 waveguide. All measurements
are from 8.0 to 12.5 GHz with 401 data points. The three test
structures were chosen to show the efficacy of the analysis for
different permittivities and substrate thicknesses. A simulation

Fig. 10. The real and complex part of input impedance of a strip dipole
antenna for different transverse strip positions and substrate permittivities.

Fig. 11. The substrate thickness required to produce a transverse resonant
as a function of frequency for different permittivities.

on thick, high dielectric constant material is included to show
the presence of a substrate resonance.
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Fig. 12. The rectangular-waveguide test fixture.

Fig. 13. The measured and MoM calculated scattering parameters from a
shorted antenna 1-mm wide and 8-mm long, centered on 0.010-in-thick�r=2:2

dielectric in WR-90 waveguide.

These simulated data presented here for comparison with the
experiment use and , and the calculation at each
frequency point takes approximately 120 central processing
unit (CPU) s on an HP-735 workstation. Fig. 13 shows the

Fig. 14. The measured and MoM calculated scattering parameters from a
shorted antenna 1-mm wide and 8-mm long centered on 0.010-in-thick�r=6:0

dielectric in WR-90 waveguide.

measured and predicted scattering from a shorted antenna
8-mm long and 1-mm wide centered on 0.010 in RT-Duroid
5880 ( ). Fig. 14 shows the measured and predicted
scattering from the same shorted antenna structure centered
on 0.010 in RT-Duroid 6010 ( ), while Fig. 15 shows
the scattering behavior of the same shorted antenna on 0.025
in RT-Duroid 6006 ( ).

The measured and predicted data from the three test struc-
tures are generally in excellent agreement. On thin substrates
below the resonant slab-mode frequency, there is little dis-
crepancy between the data. However, on the thicker
material there is a slab-mode resonance at 11.90 GHz, close to
the 12.05 GHz value as predicted by the theory of Section V.
In the vicinity of this resonance there is strong coupling to the
TE slab mode and here the measurements and MoM predicted
values diverge.

The excitation of a slab mode constrains the range of
substrate thickness and permittivity that can be used in a given
design. Other antenna shapes will couple to the slab modes in
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Fig. 15. The measured and MoM calculated scattering parameters from a
shorted antenna 1-mm wide and 8-mm centered on 0.025-in-thick�r=6:0

dielectric in WR-90 waveguide.

a different fashion, possibly exciting the mode, while
the present strip design appears to excite only the mode.
Although beyond the scope of this study, further investigation
of this coupling is possible within the present integral-equation
formulation through an additional integral equation for the
dielectric slab coupled to the integral equations solved in this
paper.

VII. CONCLUSION

A MoM analysis using Galerkin’s method has been de-
veloped for strip dipole-antenna arrays located in rectangular
waveguide. The analysis gives the frequency-dependent net-
work matrix for the array with arbitrary terminations and has
been used in the design of multiple-device oscillator power-
combining circuits [8]. The analysis makes no assumptions
about array symmetry or the nature of the current density on
the surface of each antenna. With the aid of suitable meshing
software, the effect of bias line and the analysis of antennas

of more complex geometries can be undertaken with the same
general full two-dimensional (2-D) analysis presented here.

Computational issues associated with the method were
developed, and it was shown that the number of modes
required in the summation of the doubly infinite series depends
on the subsection size and must be closely monitored to
achieve stable numerical results.

The general impedance behavior of single-strip dipole an-
tennas was presented as a function of both geometrical and
material parameters and gives some insight into array de-
sign for a given application as well as providing embedding
impedance data suitable for planar mixers or oscillators. The
existence of slab modes has been identified and a procedure
for predicting a slab-mode resonance has been given. The nu-
merical predictions show excellent agreement with experiment
away from the slab-mode resonant frequencies validated using
scattering measurements in the range of 8.0–12.5 GHz.

APPENDIX A
THE DYADIC GREEN’S FUNCTION FOR

INFINITE RECTANGULAR WAVEGUIDE

Tai [20] has derived the dyadic Green’s function for infinite
rectangular waveguide. By adopting his notation with minor
modification, the result is

(25)

where , , and ,
, is the angular frequency, is the waveguide

cross section, and where is the speed of light.
Also, when one of , and zero otherwise,
and the propagation constant . Furthermore,

(26)

(27)

The functions and relate to the TE and TM
rectangular-waveguide modes, respectively. Since by defini-
tion we are excluding-components of current, the where

terms of the dyadic are of no interest. Explicitly
writing out the four relevant elements of the dyadic:

(28)
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(29)

(30)

(31)

APPENDIX B
THE ELEMENTS OF THE REACTION MATRIX

The reaction matrix takes the form

...
...

...

...
... (32)

which is a square matrix containing submatrices—each
a 2 2 matrix. Each of these 2 2 matrices contain the
following number of elements:

(33)

for – sections and – sections on each antenna. Again,
are the elements due to the-component of the-directed

electric field from the current on antennahaving been tested
with the current elements on antenna.

The elements of the reaction matrix are

where
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If is the center of the antenna, then
where is the antenna width and is its

length. Also and . If the strip is
subdivided into and sections then integer variables

, are in the range 1: , , from 1: , ,
from 1: and , from 1: .
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